2017年8月8日 星期二

幫地球照一張X光(II) 地震學家如何用地震波了解地球構造?

文/洪瑞駿    國立中央大學地球科學學系

編按:在前篇「幫地球照一張X光 (I)地震學家如何用地震波了解地球構造?」一文中,提到人們開始利用地震儀探索地球內部構造,在這數十年的歲月中,又有哪些突破性的進展呢?讓我們繼~~續~~看~~下~~去!

「消失」的震波
如果我們將地震儀繞著地球一圈擺放,便可發現,在震央距 (註1) 某些範圍沒有S波訊號,僅有微弱的P波通過,而且震波抵達的時間比預期慢(圖一)。這便引起地震學家的注意了,畢竟如果地球內部若是均勻一致,S波又怎麼會消失?到時(波傳到的時間)又怎麼會變慢?

對科學家而言,往往最感興趣的就是調查「不合理」的事物。1914年,古騰堡(Beno Gutenberg) 從這樣的觀測結果,推測地球內部應該有個「地核」 (就如同蛋的蛋黃般) 存在,使震波紀錄在地函-地核交界處出現不連續(命名為古氏不連續面,以紀念古騰堡, 註2)。從下方圖一右邊的震波走時曲線(詳見上篇介紹)可以清楚看到這個不連續的位置,筆者以紅色箭頭標示出這個異常位置,可以發現在震央距143˚~180 ˚ 位置抵達的P波到時比預期晚,而且S波消失了,這意味著震波通過了另一個構造(事實上就是穿過了地核,當時古騰堡用P’來表示)。遲到的P波,代表的是通過地核時「波速變慢」嗎?從觀測結果來說似乎是對的,但也不完全正確,因為介質的變化太大了,事情其實頗為複雜。
圖一、若將地震儀繞地球一圈放,在各地的震波紀錄,可以清楚看到P波及S波傳遞的情形,其中在103˚~143˚ (圖中灰色範圍直達的P波和S波都消失(綠色波)。圖片修改自https://www.iris.edu/hq/inclass/search#type=6
至於「S波消失」這件事,很明顯的外核(當時認為是地核)是種「S波無法穿透的物質」。從震央距103˚開始,P波和S波就會打到地核,S波無法穿過地核而無法被接收;此外根據物理定律,P波也因為入射角/出射角的偏離而無法被清楚記錄。直到143˚出現穿越地球而過的P波,我們稱這段範圍為陰影帶(沒有直接傳遞的P和S波),只會有些許的繞射波(註2)被記錄到(圖三)。根據古騰堡當時的估算,這個核的深度大概是2900公里,這與現代認為的2889公里,僅有些微的差距。
圖二、左:若按照過去的液態地核模型,則在103˚~143˚會出現所謂「陰影帶」,地震波無法到達這個位置。右:萊曼發現的幾個出現在陰影帶內的反射波(紅色箭頭),暗示應該有一個介面在地球深處,把震波彈回地表(Lehmann, 1936)
「漏看」的震波
接著,在發現地核後,一直到1930年代前,科學家們認為有著一層地殼、地函、和液態地核。然而,進一步的發現則要等到約30年後的1929年,紐西蘭的強震說起。當另一端南半球的震波穿越地球到達歐洲,丹麥地震學家萊曼(Inge Lehmann)發現到另一種不同的波相,她推測這個這個波是從震源一路穿過地球核心而來,且震波速度又與古騰堡發現的P’不盡相同。這個波相過去被視為是繞射波,然而從頻率、震幅等幾個特性暗示它與繞射波有所不同(萊曼因此稱為P3’)。

此外,從記錄中看到在103˚~143˚這段陰影帶內,其實藏著清楚的反射波,這暗示有一個介面,把震波從地核彈回地表(圖三),然而這在古騰堡發表的走時圖中並未加以討論。萊曼試著解釋這個波相,她曾在這篇1936年經典的文獻中寫道:

An explanation o f the P 3 ' wave is required, since now it can hardly be considered probable that it is due to diffraction. A hypothesis will be here suggested which seems to hold some probability, although it cannot be proved from the data at hand. We take it . . . that inside the core there is an inner core in which the velocity is larger than the outer core.

(譯)既然了解不太可能是繞射效應造成,我們便需要解釋P3’波。在此提出了一個假說,雖然現在尚缺乏有力的資料證明,但我們認為…在地球核心裡面還從在一個速度更快的內核。

萊曼大膽假設,如果這個核裡面還有一個內核的話,就可以解釋她看到的現象,她假設地函10 km/s每秒以及地外核8 km/s,再放入一個速度較快的內地核(圖三)。當時她僅利用直線與三角函數來計算,卻已經可以完美解釋大部分的現象!她於1936年發表了內地核的看法。不過,當這樣的假設通過驗證後,萊曼並沒有近一步推算更多參數(例如確切的地內核速度、大小、組成等)。後來在1938年當古騰堡與芮克特重新檢驗這個模型後,基本上也同意內地核的想法。接著經過幾年的驗證與討論後,越來越多的地震學者支持這樣的模型,1939年傑佛瑞斯&布林提出了地球速度模型時(著名的Jeffreys-Bullen Velocity Table),也將固態內地核列入考慮。
圖三、萊曼所提出的包含地內核的地球模型,能解釋陰影帶內(灰色區域)出現的反射波以及P3’(紅色箭頭)。修改自Lehmann, 1936
由於儀器進步、日益廣泛運用,以及科學家們的細心觀察,加上時有大膽的假設與嚴謹求證。短短數十年的光景,人類已經逐漸「摸透」地球內部的主要構造。然而,並非所有研究發展都如此順遂。回溯到1910年代左右的時間點,除了地震學的發展外,還有個剛起步萌芽的假說:韋格納(Alfred Lothar Wegener) 提出大陸會移動的想法。可惜當時人們無法解釋驅動大陸運動的成因,他的假說便被束之高閣,等到二次世界大戰後,海洋探勘的興起才能將這塊拼圖湊齊,加上地震學對於地球內部的掌握,進一步發展起板塊學說(Tectonics)以及地體動力學(Geodynamics),以至於現代,我們才能對地球有個初步的認識。

註1: 震央距係指從震央開始為起點計算與測站的距離。由於地球很大,我們改用圓周角度來表示。因此通常將地球圓周分為360˚來表示距離(類似經度的概念)。

註2: 最早將此介面命名為「古氏不連續面」的典故雖已不得而知。一般在學術界也多以「核-函邊界」予以稱呼。考慮到此為科普文章,且台灣的地科教科書也多以古氏不連續面作為介紹,故本文還是用此稱呼來表示核函邊界(可參考龔慧貞老師在科學月刊552期的說明)。

參考文獻
Bolt, B. A. (1987) 50 years of studies on the inner core. EOS., Vol. 68, 6.
Bolt, B. A. & E. Hjortenberg (1994) Memorial Essay Inge Lehmann (1888-1993) Bull. Seismol. Soc. Am. Vol. 84, 1.
Lehmann, I. (1936) P', Publ. Bur. Cent. Seismol. Int. Trav. Sci. Ser. A, 14, 87.
Lehmann, I. (1987) Seismology in the days of old. EOS., Vol. 68,3.
龔慧貞,(2015) 談談「古氏」與「雷氏」不連續面。科學月刊552期

2017年8月1日 星期二

幫地球照一張X光 (I)地震學家如何用地震波了解地球構造?

文/洪瑞駿        國立中央大學地球科學學系

現在只要在google上搜尋「地球構造」,立刻就有上百張地球內部構造的圖片,這些圖片描述著地球有著地殼,包覆著厚厚的地函,然後中間有顆熾熱的地核(圖一)。乍看之下,地球就像是一顆雞蛋薄薄的外殼、蛋白地函、以及圓潤的蛋黃地核。然而,真實的地球半徑大概是6400公里,即便是那薄薄的殼都有10~30公里厚。這是如何知道的呢? 有些人會說為何不直接鑽一口井直達地心就好? 眼見為憑是最直接的方式! 雖然2016年里約奧運閉幕影片上,安倍首相藉著哆啦A夢的道具從日本鑽井穿越地球到巴西,但以現實來說,鑽井遇到的極端壓力及超高溫度,要直達地心仍是不可能 (目前最好的鑽井技術大概只能剛好穿破地殼而已)。因此,也只有仰賴非侵入式的探勘了!
圖一、地球的內部構造以及現今廣為接受的地球內部震波速度。
又不是帶地球看醫生,怎用「非侵入式探勘」?
當我們照一張X光時,部分的X光波會穿越身體並顯影出來,然而,如果X光碰到骨骼等硬物時便會反射,在影像上便無法呈現而留下空白 (這也就是為什麼照X光時,醫護人員都會提醒項鍊要拿掉,你應該不希望項鍊亂湊一腳吧?),雖然我們無法直接拿醫療用的X光穿透地心,但卻可以運用同樣的原理探勘地球內部。如果我們能製造出穿過地心的波動,地球構造也可以像拍X光一樣來得到才對,答案很接近了! 所以,我們缺乏的關鍵就是:要如何製造巨大的波動源? 最好還要傳得夠遠、能穿進地球深處。

故事要先回到1889年4月17日,德國天文學家瑞布爾帕西維茲(Ernst von Rebeur-Paschwitz) 一如往常地走到他在波茨坦電報山(Telegraph Hill)的重力觀測站查看天文引力(因為天體造成引力的變化)留下的重力紀錄。那天,不同於往常圓滑的波動,一個短暫而劇烈震盪的訊號被記錄下(圖二),起初他十分困惑,不知道該如何解釋這個古怪的訊號。不久,有消息表示,日本遭受了一場大地震,時間正是它觀測到這個訊號前的幾個小時,他立刻意識到原來這是遠自日本的地震波紀錄! 這是世界上第一張遠震紀錄,地震波穿越了1/4個地球,搖晃了將近9000公里外的儀器。至此,我們理解了地震發生時,震波其實是可以擾動整個地球的。完美的波動源找到了—地震!人體雖感受不到來自遠方的振動,但靈敏的儀器卻有辦法接受到。
圖二、最早的遠震波形。證明地震波並非僅在震央附近傳遞,而是可以抵達很遠的距離(波茨坦重力儀量到之日本地震波,1889)
偵測細微震波的最佳利器:地震儀
前面提到,天然地震提供了強大的震源能量,最好的接收器莫過於地震儀。世界上第一台地震儀是1755年由義大利人所發明; 19世紀起,高精度的地震儀開始量產,其中包括、威赫式地震儀、米爾恩-格雷地震儀等。這些儀器被安置在世界各地 (但還不普及),開始了地震的科學觀測。1906年舊金山發生規模7.8的地震,在克羅埃西亞札格瑞布天文台的地震儀也劃下這場地震的波動,當時的著名地震學家莫霍洛維奇(Andrija Mohorovičić )很快就意識到,若要有更好的紀錄,必須要申請經費添購更多、精度更高的地震儀。
增設地震儀乃先見之明之舉,因為在稍後的1909年,札格瑞布南方40公里便發生強烈地震,他安置的幾部地震儀清楚記下完整的震波紀錄,根據不同位置的波動紀錄,他將地震儀相對於震央距離排開,並對齊地震發生時間作圖(走時圖,圖三,參考註1)。如果波速完全固定、地底構造完全一致,則震波的走時曲線應該僅是單一的排列,但他發現有些震波到一定距離過後,其走時曲線出現明顯的不同 (地震波傳遞速度突然加快)。由於地震站離震央越遠,震波掃過的深度就越深,他便理解到這表示在地底較深處有另一個構造,由於震波速度非常不同,它與淺部的地質材料組成應該非常不一樣(當時還未知其組成)。這個邊界,正是區分地殼與地函(蛋殼與蛋白)的位置。後人為了紀念他的發現,便以他的名字命名,稱莫氏不連續面(或稱莫荷面),其中不連續的意思是指速度在此出現不連續,有突然加快的特徵。

圖三、莫霍洛維奇的走時圖手稿。
是什麼讓地震波「加速」?
當地震發生後,震波在地球內部傳遞,一開始的波在地殼裡傳遞(以Pg波/Sg波稱呼)。由於波傳遞越遠,震波掃過的深度會增加,當掃到莫荷面時,會出現反彈波以及沿著莫荷面前進的波(稱Pn波/Sn波),這個波以較快的速度前進,因此在走時圖上便會看到另一條行進較快的波相(圖四)「超車」了,而藉由簡單的運算(距離÷時間)就可以算出波經過該介質的速度。然而,在真實的自然界中,地球構造的複雜性,讓地震波更加複雜,而隨儀器逐漸精巧進步,也讓地震學家發現更多的波相,仔細再分可能地球內部還有好多不同的分層,自此往後幾年內,地球深部構造的探勘似乎成了熱門的議題。 

所以接下來的另一篇文章,我們將隨著過去的科學家如何找尋深入地球核心的地震波,解釋地震學家是如何找到地球的蛋黃。敬請期待下回分曉!

註1: 走時圖指將地震波紀錄對齊某一個時間(通常是地震發生時間),並依照震央距離排開,地震學家可以藉由分析不同震波傳遞的過程來判斷震波經過的地底構造特徵(如圖四)。
圖四、左:利用模擬所得到的Sg(地殼中的S波,黑線)以及Sn(在莫荷面上的S波,藍線),模型設定的地殼波速為2km/s、地函為6km/s。模擬出的走時圖中,SgSn 便分別為2.1 km/s 6km/s的速度前進。右: Sg波與Sn波在地球中傳遞的方式,由於Sn波是以地函的速度前進,因此有可能比Sg快。



參考文獻:
Herak, D. and M. Herak (2007) Andrija Mohorovičić (1857-1936)—On the occasion of the 150th anniversary of his birth. Seismol. Res.Lett. Vol. 78, 6.
Shearer, M. P. (2009) Introduction to Seismology. Second Edition, Cambridge Univ. Press. New York.
Zhu, L., Luis A. Rivera (2002) A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int. Vol. 148,3.

關於作者
洪瑞駿
對地球科學充滿好奇與想像的南部仔 因為2006屏東雙主震搖起對地震學的熱誠
國立中央大學地球科學學系-地球物理研究所碩士
目前在地震源與構造實驗室當個快樂的研究助理

夢想是當科學家(菸)

2017年7月26日 星期三

斷層上的短暫瞬間:動與不動之處(下)

文/阿樹   《震識:那些你想知道的震事》副總編輯

在上篇層上的暫瞬間:動與不動之處()談到斷層上的「地栓」(asperity)時,阿樹賣了個關子,原因是因為來不及寫拖稿太難一次把事情講清楚,所以再多花點篇幅來聊聊這件事。

斯斯有兩種,主震也有兩種
像台灣這種位於板塊邊界附近地震頻繁的區域,多數無感地震是「看似隨機」分布。通常在發生較大的地震時,才會出現時間、空間上相關性極高的地震分布。而我們會將這樣一群接近的地震稱為「地震序列」,序列中最大的那個地震自然而然就是「主震」,而在它之前的小地震就是前震,之後則為餘震。當然這也是有例外,像是有時會突然發生一大群規模2~4之間的群震,而沒有較為明顯的主震,但這種狀況並不是今天要談的,所以也先跳過

還有一種特別的情況,那就是「雙主震」,顧名思義,當地震序列中有兩個發生時間相近(數秒到數分鐘,頂多幾個小時之內),且震源位置、地震規模相近時,我們會稱它叫「雙主震」。由於地震規模的計算本來就有些容許誤差,計算上差個0.10.2的情況並不能真正分出哪個才是最主要釋放能量的地震,所以最簡單的處理方式就是讓它並列為主震

可是案情並不單純…斷層只有一個怎麼會有「雙主震」?
是的,沒代沒誌不會隨便就發生雙主震,如果一次大規模的斷層錯動會產生一次較大的主震,也就代表雙主震等於有「兩次大規模錯動」,問題來了,這兩次到底是發生在同一個斷層上?還是在不同的斷層上呢?

實際上,雙主震發生在同一斷層或不同斷層上皆有機會,或許先以「發生在不同斷層上」來切入理解會簡單一些:可以想成這個地方的地下可能有幾個潛在的斷層,兩個都面臨著能量累積快要到極限發生地震的情況下,當一個地震發生後,極有可能誘發第二個地震。


至於在同一斷層面上發生雙主震的情況,就得回溯到前上一篇文章介紹的「地栓」(asperity)概念,斷層面上往往並不均勻光滑的滑動,也不是整塊一起「鎖住不動」,外力(如板塊作用力)多半集中在數個地栓區塊上,而這些區塊有大有小、或許都有各自累積能量的極限。譬如有些較小的地栓可能隔段時間就會滑動發生小地震,而較大的地栓則會累積得久一點才釋放能量。
不同的地栓大小與地震關係示意圖

斷層面上可能有好幾個大小不同的地栓,如果正好有兩個差不多同樣大小的地栓差不多同時累積到臨界點時,有可能會一同發生地震,或是其中一個開始滑動時進一步誘發了另一處發生地震,因為兩地栓的大小、累積能量相近,地震規模也會大致相當。但如果兩者相去甚遠,我們可能就會把較小的那個事件當作前震或餘震來看待了(端看發生的先後順序)

要怎麼辨認出雙主震?
我們不可能看得到斷層上的地栓,所以唯一的資訊就是「地震波」,但要怎麼藉由地震波了解的細節,可能一言難盡,在此也僅簡述基本的概念。首先,儀器收到的地震波,其實裡面隱含了震源破裂時的特性、震源到測站間的地質條件等等,而現在的地震波分析的方式已經可以逐一分析這些參數,而前些日子在本站談矩與震矩規模時,也提到了「地震矩」是從斷層面的位態、斷層特性與斷層面破裂情形所綜合出來的參數,所以「斷層是怎麼破裂的」其實也與地震矩規模的發展幾乎是同時開始的(約莫1970年代末、80年代初期)

Thorne Lay和金森博雄[1]1980年針對索羅門群島的兩個雙主震地震序列分析後,提出了兩種不同的地栓分布(asperity distribution)的模型,其中索羅門型式(Solomon type)的地栓分布圖顯示,其隱沒帶的地栓為許多規模相近的地栓所組成,所以發生的雙主震多是獨立的地栓,會產生規模相當的地震,但其它地區多半是非均勻分布的(heterogeneous)情況。
兩種地栓分布模型,圖片摘自Lay, T. and Kanamori, H., 1980.[1]

而這非均勻分布的地栓,其實也幫助我們合理的詮釋多數地震的發生情況,在有前震的情況,多半是較小的地栓發生破裂後,接著才發生大規模的錯動(較大的主震)。此外,當較大的地震發生後,也會連帶的影響到斷層面上其它的地栓,發生「藕斷絲連」的情況,這時也可以從餘震分布推測斷層的延伸位置。如果套用在大型地震(規模大於8以上)時,甚至會發現斷層面上數個地栓連動的現象,譬如2011年東日本大地震的斷層面上就至少有4個地栓區域,而921集集地震也可看出兩個地栓分布區(下圖)
集集地震的震源模型,虛線為斷層的主要錯動區(地栓所在)

這些研究對我們有什麼重要的?
這兩篇文章說明了近代斷層與地震間關係的研究進展,讓我們至少從抽象的彈性回跳理論慢進展到「具像化地震發生的瞬間」,阿樹也要特別提醒,畢竟這些資訊都是來自於科學家對於地震波的解析,加上為數不算多的地質資料而的理論結果,這些研究也有一些極限:譬如2016生在南的地震,也在地震發生了好些天後,學者才從地震波的分析推論「雙主震」的可能性,像這樣兩起超近的雙主震事件,仍無法在地震當下就釐清,因此這類針對斷層與地震的研究,最大目的其實是在追尋地震好發處。

試想一下,如果我們有機會了解斷層面上易發生地震的地方有哪些、它的能量累積釋放情形與地表觀測資料的連結,這樣我們多少就有機會評估它未來發生地震的可能性,還記得我們站中的首篇文章嗎?文章中提到的「未來發生的地震機率」,有一部分的發展就是利用本文提到的地栓研究,提出震模型,加上再現時間與震度分布等相關研究計算求得,像這樣看似純學術的基礎研究,也是能進一步運用到民生之上的。
未來50年內,機率10%以上的振動強度的分布圖。可用於長期的防災規畫評估參考。資料來源:灣地震科學中

隨著科技進步,這些理論可能會有更好的應用,也可能會修改或發現新資訊,抽空了解這樣的地震新知,或許可以給我們的防災願景增添正向力量!

參考資料與延伸閱讀:
MB

2017年7月11日 星期二

斷層上的短暫瞬間:動與不動之處(上)

文/阿樹   《震識:那些你想知道的震事》副總編輯

兩個多月前寫的這篇震是怎麼來的一文,與大家簡單介紹了關於「彈性回跳理論」,而這是地震主要的發生機制。由此可知,地震的成因與斷層其實脫不了關係,而在《斷層「動靜之間」的學問—關於「潛移斷層」》一文中卻又告大家,有些斷層可能因為只有緩慢的潛移,雖然岩層會因此斷開錯移,但卻不會發生劇烈的地震,而文中還進一步說到,有時有的斷層會是「一部分潛移,一部分鎖定」,有些地方會緩緩的錯移,有些地方卻又會累積能量發生地震

或許你會說,怎麼這麼複雜?所以我這樣到底是該要擔心斷層還是不要擔心啊?

那些斷層面上的複雜之事
老話一句,複雜的事情沒有簡單的答案,所以我們還是要先細說背後的科學。首先,「彈性回跳理論」是種「概念化的模型」,它並不是代表所有的斷層都是以這麼「單純」的方式在動。理想情況下,斷層受外力作用時會先累積形變,就像橡皮筋和彈簧一般,直到超越最大靜摩擦力時才會滑動,但實際上有些斷層面是很「平滑」的,就是外力不會累積形變,而是推多少它就動多少,它就是我們前面的潛移斷層。

即使是這樣分成兩類,還是非常粗略,因為真實世界的情境遠遠複雜許多!
Welcome to the real world….
真實世界常見的情況是,很多斷層都會分段或是斷層面上會有分區的現象,斷層面上的某些地方是較「粗糙」的,會以彈性回跳理論的概念,反覆累積形變後錯動,而有些地方相對較平滑,並不會累積形變的位能。

所以我們如果要用個簡單模型來想像真實世界中的斷層樣貌的話,就會是這個樣子:斷層面上會是有一些地方長期被「鎖住」(locked)的地方,而地震往往就是當這些被鎖住的地方突然間滑動的時候發生的事情。
斷層面或板塊交界面並不是處處都會發生地震,主要就是因為只有某些地方會固著鎖住,而這個地方我們稱之為地栓(asperity),此一詞在後文中會說明


至於這些鎖住的地方突然滑動是什麼概念,我們先用一個影片來解釋:


雖然影片中的彈性行為是在手握的那條彈力帶上,但實際上它在詮釋的就是岩石的「彈性行為」。套用在自然界中時,地震的作用確實也是以這樣的模式在發生,每一段時間一定會發生一次滑動,但滑動發生的時間間隔並不十分固定,而時間不固定也代表著累積的形變也不會每次一樣,所以滑動量也並非完全固定的,這代表地震之間的週期不太固定、大小也不太固定啊!

如果我們把影片看得再仔細一點,可以發現前方的紅色塊體會是直接的受手拉彈立繩的應變影響,但藍色的塊體受力和運動的情形就複雜得多。當紅色塊體突然滑動時,藍色塊體並不一定會隨著滑動,而這兩塊之間的落差也是以形變的方式儲存起來,等到累積到一定程度的時候才會發生地震,而且這種類型的儲存釋放能量方式可怕得多,往往會有更大的錯動,產生更大的地震。
 
上圖中的形變與時間關係表中呈現了形變隨時間會累積並釋放能量發生地震,雖然和彈性回跳理論的概念一樣,但變成兩個塊體就複雜許多

所以,即使我們理解了地震發生的「模型」,但要藉此「精準預測」地震,也會因為斷層的行為過於複雜而變得不可行。但話說回來,正好就是有這樣的規律性,比較明顯躺在地上又會不斷累積形變而孕育地震的斷層,某程度上是可以估算地震發生的長期潛勢的。不過這個概念談到此要先暫時打住,往後我們會接著談長期地震潛勢評估的事,今天的主題我們先聚焦在斷層上的事情。

一個不易詮釋的概念性名詞
剛才說斷層上較為粗糙、容易鎖住的地方,它有個專有名詞”asperity”,它似乎很難用個中文譯名(本文中暫以其中一種譯法「地栓」稱之),因為它不僅止代表上述的意義,還用來解釋地震發生時的現象:在斷層錯動發生地震時,它會被用來指「斷層上地震矩最大的地方」(斷層面上錯動最集中的地方)

雖然從名詞定義上看起來很複雜,但其實在談論的概念是橫跨地震發生的過程與機制。當在談斷層面上的物理特性時,地栓所描述的就是那些突起粗糙的孕震區,而當地震發生時,斷層面上的這些點自然也是其中的一個或數個地栓。此時我們若要談論地震時錯動最集中的地方,用地栓正好也可以說明,畢竟依照彈性回跳理論和asperity model來看,錯動最集中的區域在地震前當然也是那個粗糙、摩擦力大而累積形變最多的點。所以它用來指涉的現象會因地震的時空而有些差異,但不變的是,它是專指斷層內性質差異和地震的關係的概念。

所以,實際上一個斷層或隱沒帶上,其實擁有許多複雜的物理現象需要考量,從上個世紀初到世紀末之間,我們也只從「確認斷層和地震的關係」發展到「發現並找到斷層面上不均勻之處和地震的關係」而已。而這項科學最難之處是它必需先從天然地震的觀測得到一些假說,還得從天然地震來驗證。理所當然的,要了解大地震,勢必也只能從大地震來著手,然而大地震除了給學者更多研究資料,卻又常帶來慘重災禍,因此阿樹也覺得研究地震之人確實是「苦其心志」啊!

最後,如果有興趣去google ”asperity”一詞的話,會發現在材料科學上,asperity也是用來描述表面或是界面上的「粗糙度」的名詞。而最初將此概念運用在斷層、地震上的學者,其中一位在前幾週的文章也曾提過的金森博雄教授(提出地震矩規模計算方式的學者),金森教授與Thorne Lay(文章第一作者)1980年針對索羅門群島地震發表研究論文時,便以此模型解釋地震的特性。但Thorne和金森教授是如何用模型解決問題,以及aspeirty model在地震研究上的貢獻,阿樹在此先賣個關子,我們下篇再談。 


但是阿樹可先給個小小提示,提示一:上述論文中的索羅門群島地震是個雙主震;提示二:這和金森教授的地震矩計算也有些關聯哦!

參考資料:
IRIS的地震模型說明與影片連結

2017年7月4日 星期二

台灣發展地震預警的過往雲煙

文/吳逸民    教授    (國立台灣大學地質科學系)

吳逸民教授(投影片中也是),阿樹於2013年拍攝(低照度解析不佳)
(編按)「強震警報簡訊」為我們爭取了數秒鐘的預警時間,能在地震發生時震波來襲前搶先知道地震即將來臨,或許大家可能多少知道這樣的簡訊服務逐漸普遍,但你知道這項技術的發展史和背後默默努力的科學家嗎?今天震識邀請了在國內地震預警技術發展扮演重要角色的吳逸民教授,跟我們談談過去的內幕秘辛點滴!

當年的時空背景
台灣、日本及墨西哥是最早投入地震預警系統(1)的國家,地震頻繁的日本同時擁有先進的高速鐵路,而地震預警的發展也因應而生。至於墨西哥,則是因為墨西哥市就建在乾枯的湖泊上,即使是遠在三百公里外的隱沒帶發生大地震,因為盆地及場址效應,也會放大地震波而造成墨西哥市高樓的損壞,1985的墨西哥地震就是ㄧ個典型的案例。地震災害總是會提醒著人們,不要輕忽地震威脅,而台灣投入地震預警系統開發的科學動機,自然也是一起顯著的地震。1986年的花蓮地震發生在外海,對花蓮的住家並沒有造成太大損害,這次地震反而最嚴重的災害卻是在120公里外的台北。根據震波的速度推估,具破壞力剪力波(S)從這次地震的發震位置傳遞到台北的時間,至少要30秒,因此,若在花蓮建立預警系統,就可以對台北提供預警時間。

投入研究的緣起
有了科學動機,還要有資源投入,到底是什麼樣的契機,讓台灣在二十幾年前就開始發展地震預警系統?1990年代,台灣正值經濟繁榮,國家建設開始蓬勃發展,中央氣象局便打鐵趁熱成立地震測報中心,當時的局長是蔡清彥教授,地震測報中心的主任是辛在勤博士。地震測報中心初期在思考該如何推動地震觀測的發展時,那時延聘了鄧大量院士、吳大銘教授、蔡義本教授及李泓鑑博士為顧問。蔡義本教授就建議應該建立強地動的觀測網(2),因為,當時有許多國家的強地動觀測網都在大地震發生後才建置,大多未能留下大地震的強震紀錄(3)。蔡局長接受了建議,開啟了台灣大規模的強震觀測史,密集設置強地動觀測站。因此,1999921集集大地震發生後,台灣便因而得到前所未有的近斷層強震紀錄,這些紀錄對於往後地震科學發展有莫大助益。這些寶貴的科學資源,也是拜當年睿智的決定所賜。

參與開發的點滴
此外,服務於美國地質調查所的李泓鑑博士,當時也建議台灣應該要發展地震預警系統,基於1986年的花蓮地震案例,加上當時國際間地震預警處於剛發展的初期,李泓鑑博士認為這領域是台灣有潛力可領先世界的研究項目,於是便開始發展地震預警系統。
當年的地震預警系統主要由加拿大的地震儀器公司負責開發,系統主要接收在花蓮地區十個地震站進行解算,而預警系統的主機分別設在花蓮及台北,這是當年的主(A)計畫。鄧大量院士回來台灣時發現,當年傳輸地震訊號的數據線路(可以想成像網路訊號的概念)仍有一半的頻寬可以使用,建議將共站的強震儀訊號即時傳回,以發展地震預警系統的備案(B)計畫。
        服完兵役的我,於1993年進入氣象局工作,不久就被指派接手B計畫,當時有些資深前輩認為,地震預警不會成功,所以B計畫就由我這菜鳥接手。我一直認為戰士是不能選戰場的,所以接手後便孜孜不倦的進行這計畫,與在遠地球另一端李泓鑑博士一起工作、分頭進行。李泓鑑博士心跳是一般人的兩倍速率,是個急躁的人,自稱是Slave driver,為了解決難題,三天兩頭總有超過一兩小時的國際電話。當年我也曾兩度飛到美國地質調查所與他共事,而他來台灣時,便是由我接待,我還曾帶他到基隆配眼鏡喝啤酒……李泓鑑博士近年來健康狀況不佳,而我現在也不喝啤酒了,如今回想起往事,不勝唏噓。

取代主案的備案
當年公務人員出國多少也有酬庸性質,第一年我出國去與李泓鑑博士工作,第二年要換其他人去時,李泓鑑博士就說,如果要換其他人,那也不用來了!所以第二次還是我出國工作。因為李泓鑑博士的專業指導,原先是備案的B計畫反而成功了,由於當年的A計畫因為是商業的系統,使用者無法進行修改,儀器業者的地震專業仍有些不足,最後終究被B計畫淘汰,然而A計畫的細節畢竟已是塵封的往事,如今也毋需多談了。
B計畫是如何成功的呢?首先,利用即時強地動訊號進行有感地震測報,因為是來自強震儀器的訊號,除了可以利用地震波形資訊進行地震定位及計算規模,亦能同時將地動加速度轉成震度。1995年之前,光是發布一個有感地震就要花上約30分鐘的時間,運用B計畫的技術後,便可縮短在10分鐘之內,而在九二一地震發生後,地震報告的訊息約兩分鐘就可以送出,也是B計畫的成效,當時也是領先世界的效率。
B計畫的基礎技術由李泓鑑博士提供,當年的的計算時效最終仍遇到一個難以突破的瓶頸:為了追求時效,需要用地震初始振動定出規模,但這是一個難以突破的關鍵技術。直到1998年提出新的規模計算法,才開始有辦法在30秒提供地震解算結果,初探地震預警的先機,藉由預警子網及虛擬子網(4)到了2002年,已經可以在地震發生後22秒提供初步的地震訊息,為當時最佳的地震預警系統,這也是有心插柳的結果,也讓地震預警可進入下一步的應用階段。
 
虛擬子網示意圖,圖中三角形指的是即時強震測站,虛線為在不同地方發生地震事件時,系統自動搜尋圓半徑約60公里的子網範圍,計算範圍中的測站可以增加地震資訊處理的效率。圖中星星為1999集集地震的震央位置。圖截自Yih-Min Wu, T.-l. T. (2002), A Virtual Subnetwork Approach to Earthquake Early Warning, Bull. Seism. Soc. Am, 92(5), 11

相關註解:
1:本文所提到的「地震預警」並非預測地震的方法,而是在地震發生時搶快在震波來襲前提供警報的技術,氣象局官方名稱為「強震即時警報」。然在技術發展過程中皆以「預警」來描述,故本文仍使用地震預警一詞。
2:「強地動觀測網」指的是以強震儀(提供紀錄為「加速度值」)所組成的地震觀測網,而加速度值可以直接換算並對應震度的資訊。
3:本文中所有「強震儀」、「強震資料」都是指記錄地震動加速度值的儀器與紀錄,都是因應工程與震度等需求而生的。

4:「子網」的概念是將全台的即時強震站再細分為數個較小的網路,如將北部畫成一區、花蓮畫成一區以此類推。當子網的儀器偵測到地震時先行分析處理資料,比起處理全台的資料,較少測站的子網可有效縮短時間。其中預警子網是事先用人工方式分區,而虛擬子網則是在地震訊號進來時,電腦依收到設號的測站位置自動畫分子網範圍,可再進一步加速預警時效,得到更多預警時間。

2017年6月20日 星期二

Did you feel it?震,知道了


文/阿樹   《震識:那些你想知道的震事》副總編輯    

「震度」不是拿來比較地震大小的!地震規模才是。

    「震度」不是拿來比較地震大小的!地震規模才是。


相信這大概是每個地科老師會跟學生講到嘴都快爛掉的事,但是當事過境遷、畢業之後,記憶難免慢慢褪色,漸漸的「這次地震有6級到底是震度6級還是規模6.0」,也變得不顯眼了。

或許是震度和規模都是描述地震的名詞,也大多用個位數的數量級來表示,常會令人混淆困惑。不過說真的,這兩件事情會混淆搞不好就是一種「宿命中的迷思概念」。因為在漫長的人類歷史中,有好長一段時間人們一直把震度當作判斷地震大小的標準,直到芮克特和古騰堡發明芮氏規模為止。



最簡單的工具:水桶
我們先不管現今科學上的震度定義,光從歷史文獻,就可以看到無數的史書記載地震的情境。在此先叉個題,今年受邀為《課本沒教的天災日本史》撰寫推薦序時,書中有一段故事讓我對「古人怎麼看震度」很有感覺!約莫在1700年左右,當時日本的史書上已有記載用「天水桶」(承接雨水用來防火災的露天水桶)來看震度情形,一般來說平常桶子是滿水的,而地震來襲時晃出來的水量,便是當時用來判斷震度情形的參考。這的確是個客觀定量的好方法,只是,要是下個地震來襲前,水還沒有補滿就無法使用了,而且桶子大小不一也是個問題,只是以當時的科學技術而言,這種方式已經具備有點量化的想法,只是沒有適切的工具和物理量可以用。


最早的震度階


19世紀的西方世界,則發明了用另一種方式嘗試量化地震的搖晃:將描述到地震造成的房屋危害、人體感受的情形加以分類,大略的定義出地震來時各地的搖晃程度, 187080年代期間,義大利的Michele Stefano Conte de Rossi和瑞士的François-Alphonse Forel一同建置了一套震度階(Rossi-Forel scale這是目前阿樹可查到最早有系統的制定出震度階紀錄)[1],一共分為十級,雖然當時早已有地震儀,但在震度分級上似乎不太能派上用場,只能幫忙定出最低一級的震度(差不多是無感的程度),接下來幾乎是描述性的分級,所以除了有羅馬數字之外,還會有代表的名詞,譬如VII級的代表名詞是" Strong shock,說明包括了會動的東西會翻落、掉落,教堂中的鐘聲會晃到響起(畢竟西方國家教堂比較普遍),建物沒有損毀。這時我們再來看看氣象局的震度表,除了震度分級和加速度值之外,還有人體的感受、建物的受損情形等定性描述



羅西-福瑞震度階(Rossi-Forel scale),摘自BSSA網頁[1]

中央氣象局公布的震度表(截圖自氣象局官網)


百年多來的演進,加上地震儀器的發展,震度的概念從「定性描述」變成可「定量測出」的值,最主流的方式就是測「最大地動加速度」(peak ground acceleration, 一般簡稱PGA),所以在地震學看到PGA不要想到高爾夫球公開賽,它是一個單位,和加速度一樣都是cm/s2,之所以用這個物理量,是因為它可以連結到「力」的概念。工程上要計算耐震程度,無非就是用作用力來作為計算參考,或許大家熟知國中教的牛頓第二定律的F=mam是質量,乘上加速度就是力。這時就不得不提一下「重力加速度」這個值,它的單位和PGA一樣,我們常算自由落體重力加速度為1g,其值約為981gal(cm/s2),而國內地震站測到的PGA第一名,就是在921集集地震時,日月潭測到東西向的989gal [2],試想一下如果你被這樣的地動加速度甩開的那一瞬間,感覺就像以自由落體的加速度在水平運動啊!


各國各地的建築、地質的特性不盡相同,也發展出了不同設計的震度階的公式,有的不僅考量加速度值,甚至也考量到速度質,或者選擇適合自己的震度階,所以當聽到國外公告的震度時,得先看一下他們的震度是什麼意思才能比較。

等震度圖的用途

震度階如何發揮用處?只要有足夠的震度時,人們自然就會發現一件事:「各地的震度不同」。而這時有一個「標準化的階度階」就能發揮用處,將所有相同震度的地方都畫上相同的顏色,不同震度用不同顏色表示,我們就能得到一張「等震度圖」,假設地質狀況與房子的建築方式一樣,震度越高處可能就會有較嚴重的災害損失,如果震後很快的產製出這個資訊,就能讓防救災更有效率

921集集地震的等震度分布圖, 摘自氣象局地震百問[3]

阿樹以前在氣象局服研發替代役時,偶爾震後會有民眾來電說:「明明地震搖的就很大,為什麼我這邊震度只有3級?」實際上在測量震度時,儀器測到的只是「測站所在地」的資訊,測站一般都是空曠的平面,樓房型式、樓層高度甚至地質條件都會影響到搖晃的情況,當然無法盡善盡美。在國內,我們的地震站的密度其實已十分密集,多半人們感受的震度誤差來自於建物差異為主,但如果是在國土更大的地方,可能就會得到較為粗糙的等震度圖。除非,我們可以回歸原來震度定義的方式定性描述,像美國地質調查(USGS)所有一個問卷回報網頁:”Did You Feel It?”(https://earthquake.usgs.gov/data/dyfi/)[4]USGS會發布世界各地的地震資訊,但沒有測站的情況下只能用經驗公式來推測,但如果大家將真實的感受和災情依照震度表中的描述回饋給他們,就能讓震度表是「真實」的情況。但我必須要說,在訴諸科學的前提下,有儀器的資料當然還是最好,描述也僅是補足資訊。


”Did You Feel It?”網頁的震度問卷表截圖
 
但震度描述還是很有用,尤其是如果我們可以考量不同型式的建物對震度的反應時,對於歷史地震的研究甚至還大有用處!利用歷史文獻,我們可以知道以前地震時的搖晃描述,若能將其對應到震度資料,並且畫出「古代的等震度圖」,便能將它和現今的地震震度與規模關係作比較,接著推估地震的規模、震央與震源深度,雖然這麼做一定存在誤差,但總比什麼都沒有來得好。科學方法有很多種,雖然震度很難直接拿來比較地震的大小,但它還是能處理無法測出地震大小時的問題!



參考資料: